A novel eurythermic and thermostale lipase LipM from Pseudomonas moraviensis M9 and its application in the partial hydrolysis of algal oil
نویسندگان
چکیده
BACKGROUND Lipases are regularly used in biotechnology to catalyse the hydrolysis of triglycerides and the synthesis of esters. Microbial lipases in particular have been widely used in a variety of industrial applications. However, the current commercial microbial lipases cannot meet industrial demand due to rapid inactivation under harsh conditions. Therefore, in order to identify more stable enzymes, we isolated novel eurythermic and thermostable lipase(s) from Pseudomonas moraviensis M9. METHODS Cloning of lipM was based on Touchdown PCR and genome walking, and then recombinant LipM was purified by guanidine hydrochloride and the nickel-nitrilotriacetic acid resins affinity chromatography. Finally, the hydrolysis of algal oil by LipM was analyzed by gas chromatograph-mass spectrometer, thin layer chromatography and gas chromatograph. RESULTS The lipM gene was first cloned from Pseudomonas moraviensis M9 via Touchdown PCR and genome walking. Sequence analysis reveals that LipM is a member of subfamily I.3 of lipases, and the predicted amino acid sequences of LipM has 82 % identity to lipase LipT from Pseudomonas mandelii JR-1, and 54 % identity to lipase PML from Pseudomonas sp. MIS38 and lipase Lip I.3 from Pseudomonas sp. CR-611. LipM was expressed in Escherichia coli, purified from inclusion bodies, and further biochemically characterized. Purified LipM differed significantly from previously reported subfamily I.3 lipases, and was eurythermic between 10 °C-95 °C. LipM activity was enhanced by Ca(2+), Sr(2+), Mn(2+), and Ba(2+), but sharply inhibited by Cu(2+), Zn(2+), Co(2+), Ni(2+), and EDTA. Compared with other lipases, LipM exhibited medium tolerance to methanol, ethanol, and isopropanol. When applied for hydrolysis of algal oil, LipM could enrich 65.88 % polyunsaturated fatty acids, which include 1.25 % eicosapentaenoic acid, 17.61 % docosapentaenoic acid, and 47.02 % docosahexaenoic acid with derivative glycerides containing 32.46 % diacylglycerols. CONCLUSIONS A novel eurythermic I.3 subfamily lipase with high tolerance and stability was identified from Pseudomonas moraviensis and biochemically characterized. It will not only improve our understanding of subfamily I.3 lipases, but also provides an ideal biocatalyst for the enrichment of polyunsaturated fatty acids. Pseudomonas moraviensis have been investigated as a potential resource of lipases.
منابع مشابه
Isolation, Optimization, and Molecular Characterization of a Lipase Producing Bacterium from Oil Contaminated Soils
Lipases have many applications in biotechnology, thanks to their ability of acylglycerides hydrolysis. They alsp possess the unique feature of acting at the lipid-water interface, which distinguishes them from esterases. Commercially useful lipases are produced by microorganisms with the extracellular lipase being produced by many bacteria including Pseudomonas. The greatest production of lipas...
متن کاملIsolation, Optimization, and Molecular Characterization of a Lipase Producing Bacterium from Oil Contaminated Soils
Lipases have many applications in biotechnology, thanks to their ability of acylglycerides hydrolysis. They alsp possess the unique feature of acting at the lipid-water interface, which distinguishes them from esterases. Commercially useful lipases are produced by microorganisms with the extracellular lipase being produced by many bacteria including Pseudomonas. The greatest production of lipas...
متن کاملLipase Immobilized into Novel GPTMS: TMOS Derived Sol-Gels and Its Application for Biodiesel Production from Waste Oil
In this essay, lipase from Burkholderia cepacia was immobilized into 3-glycidoxypropyltrimethoxysilane (GPTMS) and tetramethoxysilane (TMOS) derived sol-gels. GPTMS:TMOS molar ratio of 1:3 was found to yield the best result. The morphological characteristics were investigated based on SEM and BET analysis. Sample mean pore diameter was 39.1 nm, it had a specific surface area of 60 m2/g prior to...
متن کاملEXTRACELLULAR LIPA SE ACTIVITY CHARACTERIZATION OF SOME PSEUDOMONAS AERUGINOSA STRA INS ISOLATED FROM HUMAN INFECTIONS
Pseudomonas aeruginosa EF2, ATCC 9027 and ATCC 19660 were grown in a continuous culture under Tween 80 (polyoxyethylene sorbitan monooleate) limitation and optimum conditions (pH 6.5, 37°C at dilution rate of 0.05/h). Culture supernatants were carefully removed and stored at -20°C. To purify the lipases, the culture supernatant was reduced in volume to approximately 10 mL by an ultrafiltra...
متن کاملChanges in Enzyme Efficiency During Lipase-Catalyzed Hydrolysis of Canola Oil in a Supercritical Bioreactor
Enzyme efficiency was investigated in the lipase-catalyzed hydrolysis of canola oil in supercritical carbon dioxide (SCCO2). Immobilized lipase from Mucor miehie (Lipozyme IM) was used as the catalyst and the results showed that enzyme efficiency dropped at high pressures indicating a possible change in enzyme microstructure. Therefore, scanning electron microscopy (SEM) was used...
متن کامل